
 

 

Abstract— PIM-SM is the routing protocol which describes 

the exchange of the network topology information in order to 

construct logical multicast trees. Multicast traffic is routed along 

these multicast trees in order to more efficiently utilize the 

network resources. In this paper, we evaluate capabilities of the 

open-source implementations which allow routing of multicast 

traffic: Quagga, and Pimd. 
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I. INTRODUCTION 

Modern services that require high data flow, like IPTV, 

video on demand, video conferencing and distance learning 

are increasingly common on the Internet. Therefore, it is very 

important to use protocols which efficiently use the link 

capacity.  

Multicast provides optimal utilization of network resources 

for communication in which a source host sends a data to a 

group of destination hosts. Even if we can separately send 

unicast packets to all destination hosts, there are many reasons 

why it is desirable to use multicast in this case. The first 

advantage of using multicast is the decrease of the network 

load [1]. The second advantage is that multicast sources do 

not have need to know topology of the entire network. 

Multicasting is widely deployed in data centers, cable TV 

networks, and large corporations. 

Multicast protocols use network resources optimally. Even 

if data needs to be delivered to a large number of receivers, 

using multicast protocols source needs to send only one copy 

of packets. The network nodes perform replication of the data 

packets in order to deliver it to all receivers. In this way, link 

loads close to a multicast source are significantly reduced. 

Source host generates multicast traffic which is defined by its 

multicast address. When the receiver join a multicast group 

which is defined with multicast group address, it actually 

begins receiving traffic. Transport of data is based on the 

multicast tree. 

Today, there are several multicast protocols used. In case 

where multicast group members are densely distributed over 
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the network, the most popular multicast protocols are 

DVMRP (Distance Vector Multicast Routing Protocol) [2] 

and PIM-DM (Protocol Independent Multicast-Dense Mode) 

[3]. PIM-SM (Protocol Independent Multicast-Sparse Mode) 

[4] multicast protocol performs better when group members 

are sparsely distributed. 

DVMRP was derived from RIP (Routing Information 

Protocol). DVMRP creates multicast trees based on the 

information on the previous-hop back to the source. The first 

packet of multicast messages sent from a particular source to a 

particular multicast group is flooded across the network. If a 

router does not wish to be part of a particular multicast group, 

it sends a Prune message along the RIP path to the multicast 

source. 

PIM-DM is very similar to DVMRP, but there are 

differences between these two protocols. PIM-DM requires 

the presence and cooperation with unicast routing protocol but 

the advantage is that is independent of any concrete unicast 

routing protocol.  Unicast protocol is used for finding routes 

back to the source node. This is different from DVMRP which 

uses RIP exchange messages to create its unicast routing 

table. PIM-DM supports only source trees and creates a 

shortest path distribution tree. This is efficient in cases in 

which there are receivers on every subnet in the network. 

Unlike PIM-DM protocol, in PIM-SM protocol routers 

need to explicitly announce their desire for receiving multicast 

messages of certain multicast groups [5]. Each multicast 

group has a single RP (Rendezvous Point) router at any given 

time. Every router that wants to receive multicast messages 

from a certain group needs to send a Join message to the RP 

of that group. Multicast packets of the group are transmitted 

via RP for that group. Each host has a DR (Designated 

Router) which is the router connected to the same subnetwork 

with the highest IP address. When a DR receives an IGMP 

message indicating the membership request of a host to a 

certain group, the DR finds the RP and forwards a unicast Join 

message to it. There are several proposed improvements of 

PIM-SM protocol [6-7]. 

In this paper we will describe our testing results of 

integration of the Quagga open source routing software for 

unicast packet forwarding and Pimd open source daemon 

which implements PIM-SM protocol for multicast packet 

forwarding. We created the test network environment using 

virtual machines which was built with LXC (Linux 

Containers) virtualization software.  

This paper is organized as follows. The second section 

describes architecture of Quagga and Pimd. The third section 

describes the emulated network topology which is used for 
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testing. Tested scenarios and test results are given in the 

fourth section. The paper is concluded in the last section.  

II. QUAGGA SOFTWARE AND PIMD DAEMON 

Quagga is an advanced open source routing software 

package that implements common TCP/IP based routing 

protocols [8]. In addition to traditional IPv4 routing protocols, 

Quagga also supports IPv6 routing protocols. Quagga 

provides routing functions so machine on which it is installed 

can exchange routing information with other routers using 

routing protocols. Quagga uses this information to update the 

kernel routing table and according to this table redirects data 

packets. Platforms which have support for Quagga are 

gnu/Linux and BSD (FreeBSD, NetBSD and OpenBSD). It is 

tested and confirmed that each of these platforms and Quagga 

work correctly together. Quagga also may work on Solaris 

and MAS OSX platforms, but with some effort. For correct 

work of Quagga it is also important which compiler is used. 

The compilers whose interoperability with Quagga is 

confirmed are GCC (GNU Compiler Collection), Clang and 

ICC (Intel C++ Compiler). It should be noted that only recent 

versions of this compilers are well-tested. 

A common feature of all traditional routing softwares is 

that they are designed as a single process program which 

provides all of the routing protocol functionalities. Quagga 

takes a different approach, it is composed of several daemons, 

one per routing protocol and another one called Zebra acting 

as the kernel routing manager. Zebra provides kernel routing 

table updates and redistribution of routes between different 

routing protocols. System architecture of Quagga is shown in 

Fig. 1. It consists of Zebra, Ripd, Ripngd, Ospfd, Ospf6d, 

Bgpd, Isisd and Babeld daemons. Ripd and Ripngd 

implements RIP protocol for IPv4 and IPv6 respectively. 

These daemons are tested and they have full functionality. For 

implementation of OSPF protocol for IPv4 and IPv6 Ospfd 

and Ospf6d are used, respectively. Correct functionality of 

Ospfd is confirmed, but functionality of Ospf6d is not full, it 

is known that it has some errors. Bgpd daemon provides BGP 

protocol for IPv4 and IPv6 and its work is tested and 

confirmed. Isisd daemon implements IS-IS, and it has support 

for IPv4 and IPv6, but its functionality is not completely 

tested. Babeld daemon implements Babel protocol, its 

functionality is not fully developed. 

 

ripd ripngd ospfd isisd babeldospf6d bgpd

zebrad

Kernel operating system 

 
 

Fig. 1.  Quagga architecture 

 

This multi-process architecture provides extensibility, 

modularity and maintainability. Each daemon is independent 

from others and each daemon has its own configuration file. If 

we do not need all implemented protocols, we need to run 

only Zebra daemon and the protocol daemons associated with 

routing protocols which we want to use. Also, multi-process 

architecture of Quagga provides simple adding of new routing 

protocol daemons without affecting any other software. At the 

same time this architecture also brings many configuration 

files and terminal interfaces. In order to resolve this problem 

Quagga provides command-line tool called Vtysh. Vtysh is 

integrated user interface which connects to each daemon with 

UNIX domain socket and then works as a proxy for user 

input. On that way Vtysh allows that all processes can be 

monitored and their configuration modified from one place.  

Currently Quagga supports only unicast routing protocols. 

However there are several daemons which implement 

multicast routing protocols. One of them is Pimd daemon. 

Pimd is a lightweight stand-alone PIM-SM v2 multicast 

routing daemon [9]. It implements PIM-SM protocol 

according to RFC 2362. Pimd provides IP multicasting, 

regardless of what unicast routing protocol is in use. Multicast 

protocols use existing routing tables which are created by 

unicast routing protocols. For Pimd, PIM support in kernel 

needs to be enabled. 

III. TEST ENVIRONMENT 

In order to test functionality of Pimd daemon, the test 

network environment was created using the LXC 

virtualization software. LXC is method at the operating 

system level which enables the creation of multiple isolated 

virtual containers which act like regular hosts and have their 

own processes.  

We implemented the test network environment using only 

one PC. PC uses Ubuntu 12.10. Linux operating system. 

Virtual network was emulated on them. Using LXC 

virtualization software we created nine virtual containers. We 

created required numbers of virtual Ethernet ports on each of 

virtual containers and connected them using bridges in order 

to make the network topology which is shown in Fig. 2. 

As shown in Fig. 2. virtual network hosted by PC consist of 

five virtual routers, three client hosts and one server host. We 

gave routing functionality to some of virtual containers 

installing Quagga routing software on them. We ran Zebrad 

and Ospfd daemons in Quagga. In order to enable multicast 

functionality we installed Pimd daemon additionally. In order 

to send and receive multicast control and data traffic on server 

and client hosts, the Iperf open source networking software 

was installed. Iperf is often used for TCP and UDP packet 

streaming and measuring performance of the network. It has 

both, client and server functionality. Iperf can be used on 

various platforms, including Linux, Unix and Windows. 

In the created virtual network environment, we were able to 

track forwarding of multicast control and data packets and to 

observe multicast routing table, which were essential for 

testing of the Pimd daemon.  
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Fig. 2. Network topology 

 

IV. RESULTS OF THE PERFORMED TESTS 

In this section we will describe scenarios that we tested in 

the created network and results of those tests. 

The first scenario is when RP router is statically configured, 

server sends data and clients are interested in receiving these 

data. In each router, in the Pimd configuration file, we set the 

static address of a RP router. For correct network operation it 

is necessary that each router is configured with the same RP 

router static address. For the RP router we chose veth2 

interface of the R1 router. Server sends data to the multicast 

address 224.0.2.3 using UDP protocol. Fig. 3. represents PIM 

Join messages which clients send in order to receive multicast 

data. These Join messages create a RP tree and this tree 

determines the paths along which data will flow.  
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Fig. 3. Data and Join messages flow 

 

Since client 1 is interested in traffic of the multicast group 

224.0.2.3, it sends IGMP message of type Report for this 

group to the router R3. It sends this message to the R3 router 

because it is its DR router. As a response to this message, 

router R3 in multicast routing table creates (*,G) state, where 

G corresponds to the 224.0.2.3 multicast group. This multicast 

routing table entry is shown in Fig. 4. As we can see, this 

entry has WC and RP flags. WC flag denotes that any source 

may send data for the 224.0.2.3 multicast group. The RP flag 

denotes that the RP tree is created with this entry. 

The router R3 sends Join message to the router R5. With 

this message a (*,G) state with WC and RP flags in the router 

R5 is created. Further, the router R5 sends a Join message to 

the router R1 (which is the RP router). In the R1 router, a 

(*,G) state for the 224.0.2.3 multicast group with WC and RP 

flags is also created. In this way, the RP tree for client 1 and 

group 224.0.2.3 is created. 

 

 
 

Fig. 4. (*,G) entry in the multicast routing table of the router R3 

 

Considering that the client 2 is connected to the network via 

the same router as the client 1, paths of Join messages and 

created states are identical to the paths and states of client 1. 

DR router for client 3 is the R2 router. So, client 3 sends 

IGMP message of type Report for the 224.0.2.3 group to 

router R2. This initiates the creation of a (*,G) state  in the R2 

router for the 224.0.2.3 multicast group with WC and RP 

flags. After this, the R2 router sends Join message to the 

router R1, router R1 creates proper state and the RP tree for 

client 3 and multicast address 224.0.2.3 is formed. 

It should be noted that routers store also (S,G) entries 

beside (*,G) entries. These entries correspond to the veth0 

interface of the server (it is the address of an interface from 

which data is sourced) and 224.0.2.3 multicast address. They 

are created after the server sent the first packets of data and 

DR routers of clients discovered its identity. The purpose of 

these entries is the path optimization between server and 

clients. (S,G) states create a source-specific tree. If the source-

specific tree offers more optimal path than the RP tree, the 

data will flow along the source-specific tree. In our case, the 

RP tree and source-specific tree offer identical paths.  

Server sends only one data replica to  the RP router. RP 

router replicates the data and sends one replica to the veth1 

interface and another to the veth2 interface. Table I shows the 

traffic statistics of the router R1 which we obtained using 

Wireshark software. On the interface veth0, the average data 

rate is  1.0792 Mb/s. On the interfaces veth1 and veth2 the 

average data rates are 1.0791 Mb/s and 1.0792 Mb/s, 

respectively. This shows that the multicast traffic is 

successfully replicated.   



 

 
TABLE I 

ROUTER R1 TRAFFIC STATISTICS 

 

Interface 

(traffic) 

Veth0 

(incoming) 

Veth1 

(outgoing) 

Veth2 

(outgoing) 

Average 

number of 

packets per 

second 

89.318 89.512 89.448 

Average size 

of packet [B] 
1510.329 1506.967 1508.09 

Average data 

flow [Mb/s] 
1.0792 1.0792 1.0792 

 

The second scenario is similar to the first, but in this case, 

there are no clients who are interested in receiving multicast 

data. The traffic comes to the R1 router (which acts as a RP 

router), which did not receive any Join messages, and so it 

does not forward traffic to the other routers. In the R1 router, 

(S,G) state is created, where S represents the interface from 

which data is sent and G is the multicast address for which 

data is bound. The rest of the network routers do not have any 

multicast entries.  

The third scenario represents the first scenario in which the 

failure has happened. We tested a case in which  the link 

between router R1 and router R2 is broken. This failure does 

not have impact on the traffic of clients 1 and  2. However, the 

traffic for client 3 is temporarily stopped. It is stopped until 

the new RP tree is created for client 3 and multicast group 

224.0.2.3. Now, the RP router sends data to the client 3 via 

the veth2 interface and data flows through the routers R5, R3 

and R2. Fig. 5. represents a data flow for clients in the case of 

failure which we tested. 

In the fourth scenario, the RP router is chosen via bootstrap 

mechanism, server sends data and clients are interested in that 

data. Routers which are not candidates for the BSR 

(BootStrap Router) and the RP router do not have additional 

configuration related to bootstrap mechanism.  

We chose the R1 and R5 router as potential candidates for 

the BSR and RP routers. In router R1, we set priority 1 for the 

RP candidature and priority 15 for the BSR candidature on its 

interface veth2 (its address is 192.168.15.1). We also chose 

interface veth1 of the R5 router (its address is 192.168.16.1) 

for the RP and BSR candidatures. On this interface, we set 

priority 20 for the RP candidature  and priority 5 for the BSR 

candidature. The router with the highest priority is chosen for 

the BSR router, and the router with lowest priority is chosen 

to be the RP router. So, in our case, the router R1 is chosen to 

act as a BSR router. The R5 router sends its candidature for 

the RP router to the R1 router. Router R1 advertise the set of 

the RP candidates via a bootstrap message. This bootstrap 

message is sent to all routers in network and each router 

locally runs algorithm for the RP router election. The RP 

priority of R1 is lower than R5 priority and so the router R1 is 

chosen to be the RP router.  
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Fig. 5. Data flow in the case of link failure 

 

Fig. 6. shows sending and receiving PIM messages on the 

R5 router interface veth0. These messages are observed with 

Wireshark. It can be seen that router R5 sends its candidature 

to address 192.168.15.1 (which is the address of the veth2 

interface of the router R1). Also, the content of the bootstrap 

message that the R5 router received can be seen in Fig. 6. This 

bootstrap message comprises the information about RP 

candidates (address, priority, hold time). 

 

  
 

Fig. 6. PIM messages which are exchanged via veth0 interface of the router 

R5 

 

We observed the flow of control messages and data and it 

was identical as in the first scenario. We modified the fourth 

scenario so the RP priority of the R5 router is lower than the 



 

RP priority of the R1 router, and, consequently, router R5 was 

chosen to be an RP router. In this case, multicast traffic does 

not reach all the clients which expressed their interest to 

receive it. Actually, only client 3 receives the multicast traffic, 

since it receives directly from server along the source-specific 

tree. According to the PIM-SM v2 protocol, if a server is not 

directly connected to the RP router, multicast packets should 

be encapsulated and sent as unicast traffic to the RP router. By 

observing traffic with Wireshark, we noticed that the data sent 

from server did not reach the RP router.  

V. CONCLUSION 

In this paper, we tested interoperability between the Pimd 

multicast routing daemon and the Quagga routing software. It 

has been shown that Pimd correctly exchanges information 

with Quagga. Simulation of sending data to multicast address 

from a server and sending requests for receiving data from 

clients, confirmed exchange of control packets in a way that is 

prescribed by the PIM-SM protocol. We also confirmed 

proper creation of multicast routing tables in network routers. 

Efficiency of multicasting has been demonstrated as well - 

server sends only one replica of each multicast packet, and the 

routers of the multicast tree replicate the packet only if it is 

needed. We also validated the functionality of PIM-SM in the 

case of link failures in network. When a link that belongs to a 

multicast tree fails, the multicast tree is reconfigured so that it 

does not include the failed link. 

In the case when a multicast source is not connected 

directly to the RP router, the Pimd daemon did not work 

correctly. In that case, multicast packets are not forwarded to 

the RP, and, they, consequently did not reach the clients. We 

believe that the problem lies in encapsulation of multicast 

traffic by server, and we plan to solve this problem in our 

future work. 
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