

Abstract— PIM-SM is the routing protocol which describes

the exchange of the network topology information in order to

construct logical multicast trees. Multicast traffic is routed along

these multicast trees in order to more efficiently utilize the

network resources. In this paper, we evaluate capabilities of the

open-source implementations which allow routing of multicast

traffic: Quagga, and Pimd.

Index Terms—Multicast, Quagga, PIM-SM, Pimd

I. INTRODUCTION

Modern services that require high data flow, like IPTV,

video on demand, video conferencing and distance learning

are increasingly common on the Internet. Therefore, it is very

important to use protocols which efficiently use the link

capacity.

Multicast provides optimal utilization of network resources

for communication in which a source host sends a data to a

group of destination hosts. Even if we can separately send

unicast packets to all destination hosts, there are many reasons

why it is desirable to use multicast in this case. The first

advantage of using multicast is the decrease of the network

load [1]. The second advantage is that multicast sources do

not have need to know topology of the entire network.

Multicasting is widely deployed in data centers, cable TV

networks, and large corporations.

Multicast protocols use network resources optimally. Even

if data needs to be delivered to a large number of receivers,

using multicast protocols source needs to send only one copy

of packets. The network nodes perform replication of the data

packets in order to deliver it to all receivers. In this way, link

loads close to a multicast source are significantly reduced.

Source host generates multicast traffic which is defined by its

multicast address. When the receiver join a multicast group

which is defined with multicast group address, it actually

begins receiving traffic. Transport of data is based on the

multicast tree.

Today, there are several multicast protocols used. In case

where multicast group members are densely distributed over

Jelena Veličković is with the Inovation Center, School of Electrical

Engineering, University of Belgrade, 73 Bulevar kralja Aleksandra, 11020

Belgrade, Serbia (e-mail: jelena.velickovic@ ic.etf.rs).

Jelena Seović is with the Inovation Center, School of Electrical
Engineering, University of Belgrade, 73 Bulevar kralja Aleksandra, 11020

Belgrade, Serbia (e-mail: jelena.seovic@ ic.etf.rs).

Aleksandra Smiljanić is with the School of Electrical Engineering,
University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia

(e-mail: aleksandra@ etf.rs).

the network, the most popular multicast protocols are

DVMRP (Distance Vector Multicast Routing Protocol) [2]

and PIM-DM (Protocol Independent Multicast-Dense Mode)

[3]. PIM-SM (Protocol Independent Multicast-Sparse Mode)

[4] multicast protocol performs better when group members

are sparsely distributed.

DVMRP was derived from RIP (Routing Information

Protocol). DVMRP creates multicast trees based on the

information on the previous-hop back to the source. The first

packet of multicast messages sent from a particular source to a

particular multicast group is flooded across the network. If a

router does not wish to be part of a particular multicast group,

it sends a Prune message along the RIP path to the multicast

source.

PIM-DM is very similar to DVMRP, but there are

differences between these two protocols. PIM-DM requires

the presence and cooperation with unicast routing protocol but

the advantage is that is independent of any concrete unicast

routing protocol. Unicast protocol is used for finding routes

back to the source node. This is different from DVMRP which

uses RIP exchange messages to create its unicast routing

table. PIM-DM supports only source trees and creates a

shortest path distribution tree. This is efficient in cases in

which there are receivers on every subnet in the network.

Unlike PIM-DM protocol, in PIM-SM protocol routers

need to explicitly announce their desire for receiving multicast

messages of certain multicast groups [5]. Each multicast

group has a single RP (Rendezvous Point) router at any given

time. Every router that wants to receive multicast messages

from a certain group needs to send a Join message to the RP

of that group. Multicast packets of the group are transmitted

via RP for that group. Each host has a DR (Designated

Router) which is the router connected to the same subnetwork

with the highest IP address. When a DR receives an IGMP

message indicating the membership request of a host to a

certain group, the DR finds the RP and forwards a unicast Join

message to it. There are several proposed improvements of

PIM-SM protocol [6-7].

In this paper we will describe our testing results of

integration of the Quagga open source routing software for

unicast packet forwarding and Pimd open source daemon

which implements PIM-SM protocol for multicast packet

forwarding. We created the test network environment using

virtual machines which was built with LXC (Linux

Containers) virtualization software.

This paper is organized as follows. The second section

describes architecture of Quagga and Pimd. The third section

describes the emulated network topology which is used for

Evaluation of the Open-Source Implementation

of PIM-SM

Jelena Veličković, Jelena Seović and Aleksandra Smiljanić

testing. Tested scenarios and test results are given in the

fourth section. The paper is concluded in the last section.

II. QUAGGA SOFTWARE AND PIMD DAEMON

Quagga is an advanced open source routing software

package that implements common TCP/IP based routing

protocols [8]. In addition to traditional IPv4 routing protocols,

Quagga also supports IPv6 routing protocols. Quagga

provides routing functions so machine on which it is installed

can exchange routing information with other routers using

routing protocols. Quagga uses this information to update the

kernel routing table and according to this table redirects data

packets. Platforms which have support for Quagga are

gnu/Linux and BSD (FreeBSD, NetBSD and OpenBSD). It is

tested and confirmed that each of these platforms and Quagga

work correctly together. Quagga also may work on Solaris

and MAS OSX platforms, but with some effort. For correct

work of Quagga it is also important which compiler is used.

The compilers whose interoperability with Quagga is

confirmed are GCC (GNU Compiler Collection), Clang and

ICC (Intel C++ Compiler). It should be noted that only recent

versions of this compilers are well-tested.

A common feature of all traditional routing softwares is

that they are designed as a single process program which

provides all of the routing protocol functionalities. Quagga

takes a different approach, it is composed of several daemons,

one per routing protocol and another one called Zebra acting

as the kernel routing manager. Zebra provides kernel routing

table updates and redistribution of routes between different

routing protocols. System architecture of Quagga is shown in

Fig. 1. It consists of Zebra, Ripd, Ripngd, Ospfd, Ospf6d,

Bgpd, Isisd and Babeld daemons. Ripd and Ripngd

implements RIP protocol for IPv4 and IPv6 respectively.

These daemons are tested and they have full functionality. For

implementation of OSPF protocol for IPv4 and IPv6 Ospfd

and Ospf6d are used, respectively. Correct functionality of

Ospfd is confirmed, but functionality of Ospf6d is not full, it

is known that it has some errors. Bgpd daemon provides BGP

protocol for IPv4 and IPv6 and its work is tested and

confirmed. Isisd daemon implements IS-IS, and it has support

for IPv4 and IPv6, but its functionality is not completely

tested. Babeld daemon implements Babel protocol, its

functionality is not fully developed.

ripd ripngd ospfd isisd babeldospf6d bgpd

zebrad

Kernel operating system

Fig. 1. Quagga architecture

This multi-process architecture provides extensibility,

modularity and maintainability. Each daemon is independent

from others and each daemon has its own configuration file. If

we do not need all implemented protocols, we need to run

only Zebra daemon and the protocol daemons associated with

routing protocols which we want to use. Also, multi-process

architecture of Quagga provides simple adding of new routing

protocol daemons without affecting any other software. At the

same time this architecture also brings many configuration

files and terminal interfaces. In order to resolve this problem

Quagga provides command-line tool called Vtysh. Vtysh is

integrated user interface which connects to each daemon with

UNIX domain socket and then works as a proxy for user

input. On that way Vtysh allows that all processes can be

monitored and their configuration modified from one place.

Currently Quagga supports only unicast routing protocols.

However there are several daemons which implement

multicast routing protocols. One of them is Pimd daemon.

Pimd is a lightweight stand-alone PIM-SM v2 multicast

routing daemon [9]. It implements PIM-SM protocol

according to RFC 2362. Pimd provides IP multicasting,

regardless of what unicast routing protocol is in use. Multicast

protocols use existing routing tables which are created by

unicast routing protocols. For Pimd, PIM support in kernel

needs to be enabled.

III. TEST ENVIRONMENT

In order to test functionality of Pimd daemon, the test

network environment was created using the LXC

virtualization software. LXC is method at the operating

system level which enables the creation of multiple isolated

virtual containers which act like regular hosts and have their

own processes.

We implemented the test network environment using only

one PC. PC uses Ubuntu 12.10. Linux operating system.

Virtual network was emulated on them. Using LXC

virtualization software we created nine virtual containers. We

created required numbers of virtual Ethernet ports on each of

virtual containers and connected them using bridges in order

to make the network topology which is shown in Fig. 2.

As shown in Fig. 2. virtual network hosted by PC consist of

five virtual routers, three client hosts and one server host. We

gave routing functionality to some of virtual containers

installing Quagga routing software on them. We ran Zebrad

and Ospfd daemons in Quagga. In order to enable multicast

functionality we installed Pimd daemon additionally. In order

to send and receive multicast control and data traffic on server

and client hosts, the Iperf open source networking software

was installed. Iperf is often used for TCP and UDP packet

streaming and measuring performance of the network. It has

both, client and server functionality. Iperf can be used on

various platforms, including Linux, Unix and Windows.

In the created virtual network environment, we were able to

track forwarding of multicast control and data packets and to

observe multicast routing table, which were essential for

testing of the Pimd daemon.

R1

R2

R5

R3

R4

Server

Client 3 Client 1 Client 2

veth0

veth0

veth0

veth0
veth0

veth0

veth0 veth0 veth0

veth1

veth1

veth1

veth1

veth1

veth2

veth2

veth2
veth2

veth3
veth4

Fig. 2. Network topology

IV. RESULTS OF THE PERFORMED TESTS

In this section we will describe scenarios that we tested in

the created network and results of those tests.

The first scenario is when RP router is statically configured,

server sends data and clients are interested in receiving these

data. In each router, in the Pimd configuration file, we set the

static address of a RP router. For correct network operation it

is necessary that each router is configured with the same RP

router static address. For the RP router we chose veth2

interface of the R1 router. Server sends data to the multicast

address 224.0.2.3 using UDP protocol. Fig. 3. represents PIM

Join messages which clients send in order to receive multicast

data. These Join messages create a RP tree and this tree

determines the paths along which data will flow.

R1

R2

R5

R3

R4

Server

Client 3 Client 1 Client 2

veth0

veth0

veth0

veth0
veth0

veth0

veth0 veth0 veth0

veth1

veth1

veth1

veth1

veth1

veth2

veth2

veth2 veth2

veth3
veth4

Data

Join message

Fig. 3. Data and Join messages flow

Since client 1 is interested in traffic of the multicast group

224.0.2.3, it sends IGMP message of type Report for this

group to the router R3. It sends this message to the R3 router

because it is its DR router. As a response to this message,

router R3 in multicast routing table creates (*,G) state, where

G corresponds to the 224.0.2.3 multicast group. This multicast

routing table entry is shown in Fig. 4. As we can see, this

entry has WC and RP flags. WC flag denotes that any source

may send data for the 224.0.2.3 multicast group. The RP flag

denotes that the RP tree is created with this entry.

The router R3 sends Join message to the router R5. With

this message a (*,G) state with WC and RP flags in the router

R5 is created. Further, the router R5 sends a Join message to

the router R1 (which is the RP router). In the R1 router, a

(*,G) state for the 224.0.2.3 multicast group with WC and RP

flags is also created. In this way, the RP tree for client 1 and

group 224.0.2.3 is created.

Fig. 4. (*,G) entry in the multicast routing table of the router R3

Considering that the client 2 is connected to the network via

the same router as the client 1, paths of Join messages and

created states are identical to the paths and states of client 1.

DR router for client 3 is the R2 router. So, client 3 sends

IGMP message of type Report for the 224.0.2.3 group to

router R2. This initiates the creation of a (*,G) state in the R2

router for the 224.0.2.3 multicast group with WC and RP

flags. After this, the R2 router sends Join message to the

router R1, router R1 creates proper state and the RP tree for

client 3 and multicast address 224.0.2.3 is formed.

It should be noted that routers store also (S,G) entries

beside (*,G) entries. These entries correspond to the veth0

interface of the server (it is the address of an interface from

which data is sourced) and 224.0.2.3 multicast address. They

are created after the server sent the first packets of data and

DR routers of clients discovered its identity. The purpose of

these entries is the path optimization between server and

clients. (S,G) states create a source-specific tree. If the source-

specific tree offers more optimal path than the RP tree, the

data will flow along the source-specific tree. In our case, the

RP tree and source-specific tree offer identical paths.

Server sends only one data replica to the RP router. RP

router replicates the data and sends one replica to the veth1

interface and another to the veth2 interface. Table I shows the

traffic statistics of the router R1 which we obtained using

Wireshark software. On the interface veth0, the average data

rate is 1.0792 Mb/s. On the interfaces veth1 and veth2 the

average data rates are 1.0791 Mb/s and 1.0792 Mb/s,

respectively. This shows that the multicast traffic is

successfully replicated.

TABLE I

ROUTER R1 TRAFFIC STATISTICS

Interface

(traffic)

Veth0

(incoming)

Veth1

(outgoing)

Veth2

(outgoing)

Average

number of

packets per

second

89.318 89.512 89.448

Average size

of packet [B]
1510.329 1506.967 1508.09

Average data

flow [Mb/s]
1.0792 1.0792 1.0792

The second scenario is similar to the first, but in this case,

there are no clients who are interested in receiving multicast

data. The traffic comes to the R1 router (which acts as a RP

router), which did not receive any Join messages, and so it

does not forward traffic to the other routers. In the R1 router,

(S,G) state is created, where S represents the interface from

which data is sent and G is the multicast address for which

data is bound. The rest of the network routers do not have any

multicast entries.

The third scenario represents the first scenario in which the

failure has happened. We tested a case in which the link

between router R1 and router R2 is broken. This failure does

not have impact on the traffic of clients 1 and 2. However, the

traffic for client 3 is temporarily stopped. It is stopped until

the new RP tree is created for client 3 and multicast group

224.0.2.3. Now, the RP router sends data to the client 3 via

the veth2 interface and data flows through the routers R5, R3

and R2. Fig. 5. represents a data flow for clients in the case of

failure which we tested.

In the fourth scenario, the RP router is chosen via bootstrap

mechanism, server sends data and clients are interested in that

data. Routers which are not candidates for the BSR

(BootStrap Router) and the RP router do not have additional

configuration related to bootstrap mechanism.

We chose the R1 and R5 router as potential candidates for

the BSR and RP routers. In router R1, we set priority 1 for the

RP candidature and priority 15 for the BSR candidature on its

interface veth2 (its address is 192.168.15.1). We also chose

interface veth1 of the R5 router (its address is 192.168.16.1)

for the RP and BSR candidatures. On this interface, we set

priority 20 for the RP candidature and priority 5 for the BSR

candidature. The router with the highest priority is chosen for

the BSR router, and the router with lowest priority is chosen

to be the RP router. So, in our case, the router R1 is chosen to

act as a BSR router. The R5 router sends its candidature for

the RP router to the R1 router. Router R1 advertise the set of

the RP candidates via a bootstrap message. This bootstrap

message is sent to all routers in network and each router

locally runs algorithm for the RP router election. The RP

priority of R1 is lower than R5 priority and so the router R1 is

chosen to be the RP router.

R1

R2

R5

R3

R4

Server

Client 3 Client 1 Client 2

veth0

veth0

veth0

veth0
veth0

veth0

veth0 veth0 veth0

veth1

veth1

veth1

veth1

veth1

veth2

veth2

veth2 veth2

veth3
veth4

Data

Fig. 5. Data flow in the case of link failure

Fig. 6. shows sending and receiving PIM messages on the

R5 router interface veth0. These messages are observed with

Wireshark. It can be seen that router R5 sends its candidature

to address 192.168.15.1 (which is the address of the veth2

interface of the router R1). Also, the content of the bootstrap

message that the R5 router received can be seen in Fig. 6. This

bootstrap message comprises the information about RP

candidates (address, priority, hold time).

Fig. 6. PIM messages which are exchanged via veth0 interface of the router

R5

We observed the flow of control messages and data and it

was identical as in the first scenario. We modified the fourth

scenario so the RP priority of the R5 router is lower than the

RP priority of the R1 router, and, consequently, router R5 was

chosen to be an RP router. In this case, multicast traffic does

not reach all the clients which expressed their interest to

receive it. Actually, only client 3 receives the multicast traffic,

since it receives directly from server along the source-specific

tree. According to the PIM-SM v2 protocol, if a server is not

directly connected to the RP router, multicast packets should

be encapsulated and sent as unicast traffic to the RP router. By

observing traffic with Wireshark, we noticed that the data sent

from server did not reach the RP router.

V. CONCLUSION

In this paper, we tested interoperability between the Pimd

multicast routing daemon and the Quagga routing software. It

has been shown that Pimd correctly exchanges information

with Quagga. Simulation of sending data to multicast address

from a server and sending requests for receiving data from

clients, confirmed exchange of control packets in a way that is

prescribed by the PIM-SM protocol. We also confirmed

proper creation of multicast routing tables in network routers.

Efficiency of multicasting has been demonstrated as well -

server sends only one replica of each multicast packet, and the

routers of the multicast tree replicate the packet only if it is

needed. We also validated the functionality of PIM-SM in the

case of link failures in network. When a link that belongs to a

multicast tree fails, the multicast tree is reconfigured so that it

does not include the failed link.

In the case when a multicast source is not connected

directly to the RP router, the Pimd daemon did not work

correctly. In that case, multicast packets are not forwarded to

the RP, and, they, consequently did not reach the clients. We

believe that the problem lies in encapsulation of multicast

traffic by server, and we plan to solve this problem in our

future work.

ACKNOWLEDGMENT

We express gratitude to the Serbian Ministry of Education,

Science and Technology, Telekom Srbija and Informatika for

their financial support.

REFERENCES

[1] S. Ueno, T. Kato, K. Suzuki, “Analysis of Internet multicast traffic
performance considering multicast routing protocol”, Proceedings 2000

International Conference on Network Protocols, Osaka, Japan,

November, 2000
[2] https://tools.ietf.org/html/rfc1075

[3] https://tools.ietf.org/html/rfc3973

[4] https://tools.ietf.org/html/rfc2362
[5] T. Bartczak, P. Zwierzykowski, “Validation of PIM DM and PIM SM

protocols in the NS2 network simulator”, AFRICON 2009, Nairobi,

Kenya, September 2009.
[6] T. Čičić, S. Gjessing, O. Kure “An Improved PIM-SM Tree Recovery

Algorithm”, High Performance Switching and Routing, 2001, Dallas,

USA, May 2001.
[7] Weicheng Xiong, LibingWu, Shengchao Ding, Chanle Wu, “Research

on PIM-SM Multicast Routing Improvement”, Computer Design and

Applications (ICCDA) 2010, Qinhuangdao, China, June 2010.
[8] http://www.nongnu.org/quagga/

[9] http://troglobit.com/multicast-howto.html

